Методы измерения прямые и косвенные. Виды измерений Прямым измерителем услуги является

Метод измерений - совокупность приемов использования принципов и средств измерений.

А).Метод непосредственной оценки заключается в определения значения физической величины по отсчетному устройству измерительного прибора прямого действия. Например – измерение напряжения вольтметром.Этот метод является наиболее распространенным, но его точность зависит от точности измерительного прибора.

Б).Метод сравнения с мерой – в этом случае измеряемая величина сравнивается с величиной, воспроизводимой мерой. Точность измерения может быть выше, чем точность непосредственной оценки.

Различают следующие разновидности метода сравнения с мерой:

Метод противопоставления , при котором измеряемая и воспроизводимая величина одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между величинами. Пример: измерение веса с помощью рычажных весов и набора гирь.

Дифференциальный метод , при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. При этом уравновешивание измеряемой величины известной производится не полностью. Пример: измерение напряжения постоянного тока с помощью дискретного делителя напряжения, источника образцового напряжения и вольтметра.

Нулевой метод , при котором результирующий эффект воздействия обеих величин на прибор сравнения доводят до нуля, что фиксируется высокочувствительным прибором – нуль-индикатором. Пример: измерение сопротивления резистора с помощью четырехплечевого моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

Метод замещения , при котором производится поочередное подключение на вход прибора измеряемой величины и известной величины, и по двум показаниям прибора оценивается значение измеряемой величины, а затем подбором известной величины добиваются, чтобы оба показания совпали. При этом методе может быть достигнута высокая точность измерений при высокой точности меры известной величины и высокой чувствительности прибора. Пример: точное точное измерение малого напряжения при помощи высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

Метод совпадения , при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Пример: измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по известной частоте вспышек и смещению метки определяют частоту вращения детали.

К видам измерений (если не разделять их по видам измеряемых физических величин на линейные, оптические, электрические и др.) можно отнести измерения:

  • прямые и косвенные,
  • совокупные и совместные,
  • абсолютные и относительные,
  • однократные и многократные,
  • технические и метрологические,
  • равноточные и неравноточные,
  • равнорассеянные и неравнорассеянные,
  • статические и динамические.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

При прямых измерениях искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением

где Q – измеряемая величина,

Косвенные измерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…),

где X, Y, Z,… – результаты прямых измерений.

Измерение некоторого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.

При совокупных измерениях осуществляется измерение нескольких одноименных величин.

Совместные измерения подразумевают измерение нескольких неодноименных величин, например, для нахождения зависимости между ними.

При измерениях для отображения результатов могут быть использованы разные оценочные шкалы, в том числе градуированные либо в единицах измеряемой физической величины, либо в различных относительных единицах, включая и безразмерные. В соответствии с этим принято различать абсолютные и относительные измерения.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения, причем многократные неявно подразумевают последующую математическую обработку результатов.

В зависимости от точности измерения делят на технические и метрологические, а также на равноточные и неравноточные, равнорассеянные и неравнорассеянные.

Технические измерения выполняют с заранее установленной точностью, иными словами, погрешность технических измерений не должна превышать заранее заданного значения.

Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной погрешности измерения.

Оценка равноточности и неравноточности, равнорассеянности и неравнорассеянности результатов нескольких серий измерений зависит от выбранной предельной меры различия погрешностей или их случайных составляющих, конкретное значение которой определяют в зависимости от задачи измерения.

Статические и динамические измерения правильнее характеризовать в зависимости от соизмеримости режима восприятия входного сигнала измерительной информации и его преобразования. При измерении в статическом (квазистатическом) режиме скорость изменения входного сигнала несоизмеримо ниже скорости его преобразования в измерительной цепи и все изменения фиксируются без дополнительных динамических искажений. При измерении в динамическом режиме появляются дополнительные (динамические) погрешности, связанные со слишком быстрым изменением самой измеряемой физической величины или входного сигнала измерительной информации от постоянной измеряемой величины.

Прямыми измерениями называют такие измерения, которые получены непосредственно с помощью измерительного прибора. К прямым измерениям можно отнести измерение длины линейкой, штангенциркулем, измерение напряжения вольтметром, измерение температуры термометром и т.п. На результатах прямых измерений могут оказать влияние различные факторы. Поэтому погрешность измерений имеет различный вид, т.е. имеет место погрешность прибора, систематические и случайные погрешности, ошибки округления при снятии отсчета со шкалы прибора, промахи. В связи с этим важно выявить в каждом конкретном эксперименте, какая из ошибок измерения является наибольшей, и если окажется, что одна из них на порядок превышает все остальные, то последними погрешностями можно пренебречь.

Если же все учитываемые погрешности по порядку величины одинаковы, то необходимо оценить совместный эффект нескольких различных погрешностей. В общем случае суммарная ошибка подсчитывается по формуле:

где  – случайная погрешность,  – погрешность прибора, – погрешность округления.

В большинстве экспериментальных исследований физическая величина измеряется не прямо, а через другие величины, которые в свою очередь определяются прямыми измерениями. В этих случаях измеряемая физическая величина определяется через прямо измеренные величины посредством формул. Такие измерения называются косвенными. На языке математики это означает, что искомая физическая величина f связана с другими величинами х 1, х 2, х 3, ,. х n функциональной зависимостью, т.е

F = f (x 1 , x 2 ,….,х n )

Примером таких зависимостей может служить объем шара

.

В данном случае косвенно измеряемой величиной является V - шара, которая определится при прямом измерении радиуса шара R. Данная измеряемая величина V является функцией одной переменной.

Другим примером может быть плотность твердого тела

. (8)

Здесь – является косвенно измеряемая величина, которая определяется прямым измерением массы тела m и косвенной величиной V . Данная измеряемая величина является функцией двух переменных, т.е.

= (m, V)

Теория погрешностей показывает, что погрешность функции оценивается суммой погрешностей всех аргументов. Погрешность функции будет тем меньше, чем меньше погрешностей её аргументов.

4.Построение графиков по экспериментальным измерениям.

Существенным моментом экспериментального исследования является построение графиков. При построении графиков, прежде всего необходимо выбрать систему координат. Наиболее распространенной является прямоугольная система координат с координатной сеткой, образованной равностоящими друг от друга параллельными прямыми (например, миллиметровая бумага). На осях координат через определенные промежутки наносятся деления в определенном масштабе для функции и аргумента.

В лабораторных работах при изучении физических явлений приходится учитывать изменения одних величин в зависимости от изменения других. Например: при рассмотрении движения тела устанавливается функциональная зависимость пройденного пути от времени; при изучении электросопротивления проводника от температуры. Можно привести еще множество примеров.

Переменную величину У называют функцией другой переменной величины Х (аргумент), если каждому значение У будет соответствовать вполне определенное значение величины Х , то можно записать зависимость функции в виде У = У(Х) .

Из определения функции следует, что для её задания необходимо указать два множества чисел (значений аргумента Х и функции У ), а так же закон взаимозависимости и соответствия между ними (Х и У ). Экспериментально функция может быть задана четырьмя способами:

    Таблицей; 2. Аналитически, в виде формулы; 3. Графически; 4. Словесно.

Например: 1. Табличный способ задания функции –зависимости величины постоянного тока I от величины напряжения U , т.е. I = f (U ) .

Таблица 2

2.Аналитический способ задания функции устанавливается формулой, при помощи которой по заданным (известным) значениям аргумента можно определить соответствующие значения функции. Например, функциональная зависимость, приведенная в таблице 2, может быть записана формулой:

(9)

3.Графический способ задания функции.

Графиком функции I = f (U ) в декартовой системе координат называется геометрическое место точек, построенное по числовым значениям координатной точки аргумента и функции.

На рис. 1 построен график зависимости I = f (U ) , заданный таблицей.

Точки, найденные на опыте и наносимые на график, отмечаются отчетливо в виде кружочков, крестиков. На графике для каждой построенной точки необходимо указывать погрешности в виде «молоточков» (см. рис 1). Размеры этих «молоточков» должны быть равны удвоенному значению абсолютных ошибок функции и аргумента.

Масштабы графиков надо выбирать так, чтобы наименьшее расстояние, отсчитываемое по графику, было бы не меньше наибольшей абсолютной погрешности измерений. Однако такой выбор масштаба не всегда удобен. В некоторых случаях удобней взять по одной из осей несколько больший или меньший масштаб.

Если исследуемый интервал значений аргумента или функции отстоит от начала координат на величину, сравнимую с величиной самого интервала, то целесообразно перенести начало координат в точку, близкую к началу исследуемого интервала, как по оси абсцисс, так и по оси ординат.

Проведение кривой (т.е. соединение экспериментальных точек) через точки обычно осуществляется в соответствии с идеями метода наименьших квадратов. В теории вероятностей показано, что наилучшим приближением к экспериментальным точкам будет такая кривая (или прямая), для которой сумма наименьших квадратов отклонений по вертикали от точки до кривой будет минимальной.

Нанесенные на координатную бумагу точки соединяют плавной кривой, причем кривая должна проходить возможно ближе ко всем экспериментальным точкам. Проводить кривую следует так, чтобы она лежала возможно ближе к точкам не превышаемые погрешности и чтобы по обе стороны кривой оказывалось приблизительно равное их количество (см. рис. 2).

Если при построении кривой одна или несколько точек выходят за пределы области допустимых значений (см. рис. 2, точки А и В ), то кривую проводят по остальным точкам, а выпавшие точки А и В как промахи не берут в учет. Затем проводят повторные измерения в этой области (точки А и В ) и устанавливается причина такого отклонения (либо это промах или законное нарушение найденной зависимости).

Если исследуемая, экспериментально построенная функция обнаруживает «особые» точки, (например, точки экстремума, перегиба, разрыва и т.д.). То увеличивается число экспериментов при малых значениях шага (аргумента) в области особых точек.

Определение 1

Измерение представляет собой комплекс определенных действий с целью выявления соотношения одной однородной величины, которая измеряется, к другой, хранящейся в средстве измерений. Полученное в итоге значение и есть числовое значение измеряемой физической величины.

Понятие измерения в физике

Процесс измерения показателя физической величины на практике осуществляется посредством задействования разнообразных измерительных средств и специальных приборов, установок и систем.

Измерение физической величины включает в себя два базовых этапа:

  • сравнение величины, которая измеряется с единицей;
  • разные способы индикации для преобразования в комфортную форму.

Принцип измерений считается физическим явлением (эффектом), положенным в основу измерения. Метод измерений является одним приемом или комплексом определенных измерительных действий, осуществляемых в соответствии с реализованными принципами измерений.

Характеризует точность измерения полученная погрешность. В более упрощенном формате, путем прикладывания линейки с делениями к определенной детали, в сущности, производится сравнение ее размера с единицей на линейке и после выполнения соответствующих расчетов получается значение величины (толщины, длины, высоты и прочих параметров измеряемой детали).

Замечание 1

В случаях невозможности произведения измерительных действий, на практике происходит оценка таких величин с опорой на условные шкалы (например, шкалы Мооса и Рихтера, характеризующие твердость металлов и землетрясения).

Важность существования и классификация измерений в физике

Определение 2

Наука, отвечающая за исследование всех аспектов измерений, называется метрологией.

Измерения в физике занимают существенную позицию, поскольку позволяют сравнивать результаты теоретического и экспериментального исследований. Все измерения классифицируются определенным образом:

  • соответственно видам измерений (косвенные, прямые, совокупные (когда производится комплексное измерение нескольких одноименных величин, где искомое значение определяется путем решения системы соответствующих уравнений при различных сочетаниях величин), совместные (с целью определения взаимосвязи между несколькими неодноименными величинами);
  • согласно методам измерений (непосредственная оценка (значение величины устанавливается путем расчетов исключительно по показывающему средству измерений), сравнение с мерой, измерение замещением (где измеряемая величина замещается мерой с уже известным значением величины), нулевой, дифференциальный (выполняется сравнение измеряемой величины с однородной величиной с уже известным значением, несущественно отличающимся от нее, и где устанавливается разность между данными двумя величинами), измерение дополнением);
  • по назначению (метрологические и технические);
  • по точности (детерминированные и случайные);
  • согласно отношению к изменениям измеряемой величины (динамические и статические);
  • исходя из количественного показателя измерений (многократные и однократные);
  • по конечным показателям измерений (относительное (характеризуется измерением отношения физической величины к выступающей в роли единицы одноименной (исходной) величине, и абсолютное (опирается на прямые измерения одной либо нескольких ключевых величин и применении значений физических постоянных величин (констант).

Понятие прямых и косвенных измерений в физике

Замечание 2

Полученные, согласно результатам измерений, значения разных величин могут в действительности оказаться зависимыми друг от друга. В физике устанавливается связь между подобными величинами и выражается в формате определенных формул, демонстрирующих процесс нахождения числовых значений одних величин по аналогичным значениям других.

Согласно классификационному признаку, измерения могут подразделяться на прямые и косвенные, что выступает непосредственной характеристикой их вида.

Прямым измерением считается измерение, согласно которому, искомые значения физических величин получаются непосредственным образом. В случае проведения прямых измерений, в измерительных целях привлекаются специализированные приборы, отвечающие за изменение самой исследуемой величины. Так, массу тел, например, можно узнать, используя показатель на весах, длина узнается за счет измерения линейкой, а время засекается с помощью секундомера.

Косвенное измерение считается в физике установлением искомого значения величины на основании полученных при измерении результатов прямого измерения остальных физических величин, взаимосвязанных функциональным образом с исходной величиной.

Те же величины в иных случаях могут находиться исключительно благодаря косвенным измерениям – пересчету остальных важных величин, чьи значения были получены в процессе прямых измерений.

Так физики вычисляют расстояние от нашей планеты до Солнца, массу Земли или, например, продолжительность геологических периодов. Измерение плотности тел, согласно показателям их объемов и массы, скорости поездов (по величине пройденного за известное время пути), также нужно отнести к косвенному измерению.

Поскольку физика не является точной наукой, подобно математике, абсолютная точность ей не присуща. Так, в рамках физических экспериментов любой вид измерения (как косвенный, так и прямой) может давать не точное, а лишь приблизительное значение измеряемой физической величины.

Замечание 3

При измерении, например, длины полученный результат будет зависимым от точности выбранного прибора (к примеру, штангенциркуль позволяет осуществлять измерения с точностью до 0,1 мм, а линейка - только до 1 мм); от качества внешних условий, таких как температура, влажность, склонность к деформационным состояниям и пр.

Следовательно, результаты косвенных измерений, вычисляемые по приближенным результатам, получившимся при прямых измерениях, также окажутся приблизительными. По этой причине, параллельно с результатом, всегда требуется указание его точности, называемой абсолютной погрешностью результатов.

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения – это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.

Косвенные измерения – отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.

Совокупные измерения – сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения – это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

По используемому методу измерения – совокупности приемов использования принципов и средств измерений различают:

– метод непосредственной оценки;

– метод сравнения с мерой;

– метод противопоставления;

– метод дифференциальный;

– метод нулевой;

– метод замещения;

– метод совпадений.

По условиям, определяющим точность результата, измерения делятся на три класса: измерения максимально возможной точности, достижимой при существующем уровнетехники; контрольно-поверочные измерения, погрешность которых не должна превышать некоторое заданное значение; технические (рабочие) измерения, в которых погрешность результата измерения определяется характеристиками средств измерений.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств . Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения .

Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация - от латинского слова "information", что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм - последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа - последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда - это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда - это указание некоему интерфейсу командной строки.

Данные - информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.